
SMA Data Reduction with CASA

Masaaki Hiramatsu
ALMA Regional Center Taiwan node/ASIAA

hiramatsu@asiaa.sinica.edu.tw

November 10, 2010

Abstract

Here I introduce the SMA data reduction procedure with CASA.

1 Introduction

1.1 Minimum Introduction of CASA

CASA, the Common Astronomy Software Applications package, is a software for the data reduction
in radio astronomy. After installing CASA into your computer properly, you can launch CASA by
typing

> casapy

A CASA logger window appears and now you can execute various CASA commands. The command
list is shown by typing

CASA> tasklist

The parameters for the tasks can be checked with inp TASKNAME and specified at once by

CASA> plotxy(vis="hh212_all.ms",xaxis="channel",yaxis="amp",....)

or one by one

CASA> vis="hh212_all.ms"
CASA> xaxis="channel"
....
CASA> go plotxy

If the parameters are specified incorrectly, that part turns red in the inp output. Blue means good
and black indicates the default values. You can read the help file by

CASA> help TASKNAME

I suggest you to read the help file and the cookbook (see §1.4) whenever you have questions.

1

1.2 Outline of the Procedure

In this material I show the data reduction procedure as follows.

1. Data Preparation and Import
2. Data Inspection and Flagging
3. Bandpass Calibration
4. Flux Scaling
5. Gain Calibration
6. Imaging

The detailed explanation of each step is out of the scope of this article. Useful lecture materials are
available in the web site for the Second Asian Radio Astronomy School in 20081.

1.3 Sample Data and Script

The sample data are the two-field mosaic observation of a protostar HH212 with SiO (J = 8− 7, 347
GHz) and CO (J = 3 − 2, 345 GHz) in USB. The calibrators are Uranus (Flux calibrator), 3c454.3
(Bandpass calibrator), and 0530+135 (Gain calibrator). The data were also used in the Second Asian
Radio Astronomy School and the data reduction procedure with MIR/Miriad is explained in the web
site of the School, so you can compare the process with CASA and MIR/Miriad. For the detailed
description of the observations, please read the paper Lee et al. (2007) ApJ, 659, 499.

The CASA (Python) script data used in this material as well as the sample data (a tar.gz file)
are available in http://www.asiaa.sinica.edu.tw/%7Ehiramatsu/CASA/. This script requires
CASA ver 3.0.2. Some tasks do not work properly on the older versions of CASA because of the
modification of the parameter keywords. Please make sure the version of CASA. You can simply run
this script and get the results, but I strongly recommend to copy and execute each command to check
what’s happening.

There is another sample CASA script for SMA data reduction written by Dr. Crystal Brogan at
NRAO. The script and the sample data are available at ”Tutorials and Training” on NRAO CASA
website2. The script has more careful calibration process than the one used in this tutorial. It would
be good to start with the script in this tutorial to figure out the basic calibration/imaging process
with CASA. Once you get familiar with the CASA’s methodology and if you would like to do more
careful and complicated calibration, you might try Crystal’s script.

1.4 SMA-specific issues

From the next section I introduce how to reduce the SMA data with CASA. There are several SMA-
specific issues, especially in importing the data to CASA. CASA can handle the ASDM (ALMA
Science Data Model) dataset which is the default data format of ALMA, so you do not need to
consider the following issues.

First, the current version of CASA cannot apply the Tsys correction. Therefore you need to do
it in MIR in advance. Second, CASA cannot load raw SMA data. So the data should be converted
to UVFITS after the Tsys correction in MIR. You can use CASA’s task importuvfits to convert the
UVFITS to CASA format (Measurement Set, MS). Note that you need to convert each SMA chunk
to separate UVFITS, otherwise all the chunks are merged into one spectral window and you cannot
calibrate the bandpass properly.

1https://www.asiaa.sinica.edu.tw/act/radio_school/2008/index.php
2http://casa.nrao.edu/tutorial.shtml

2

1.5 References

You can obtain the various useful information of CASA in the NRAO CASA website3.

• Obtaining CASA: http://casa.nrao.edu/casa_obtaining.shtml
• CASA Wiki: http://casaguides.nrao.edu/index.php
• Cookbook: http://casa.nrao.edu/ref_cookbook.shtml
• Tutorials and Training: http://casa.nrao.edu/tutorial.shtml

2 Data Preparation and Import

The sample tar.gz file contains the UVFITS files for all the sources. Put this file and the sample
script in your working directory and launch CASA by typing > casapy. Hereafter the CASA prompt
is shown simply by >. All the commands in the following should be run on CASA.

At the beginning of the sample script we prepare the environment. After deleting unnecessary
files and directories,

> os.system(’mkdir spw_ms_files’)
> os.system(’tar zxf hh212uvfits.tar.gz’)

creates a data directory for MS files and extract the tar.gz file to a directory uvfits. This directory
contains a number of UVFITS files. The files are named as SOURCENAME.spw(1-24).fits.

The commands from Line 43 in the script are the Python loops to convert the UVFITS to MS
format (importuvfits) and concatenate 24 MSs for 24 spectral windows into one MS for each source
(concat). Note that if you copy and paste the commands, please copy from Lines 43 to 57 (from the
beginning to the end of the python for loop) at once and paste them. Concatenate the MSs for each
source into one MS with

> concat(vis=visfiles,concatvis=’hh212_all.ms’,timesort=True)

The option timesort=True sorts the data along the time so that we can calibrate the time-dependent
gain. The Measurement Set hh212_all.ms contains all the data.

3 Data Inspection and Flagging

3.1 Data Inspection

A task listobs displays the detailed information of the data in the CASA logger. You can check the
names and Field IDs of the objects, the channel numbers and frequencies of the spectral windows.
Note that the spectral window (spw) ID starts from 0, not 1. We use these source (field) and spw
IDs later.

ID Code Name RA Decl Epoch SrcId
0 URANUS 22:35:52.4345 -09.40.22.2038 J2000 0
1 HH212_S 05:43:51.1604 -01.03.01.2800 J2000 1
2 HH212_N 05:43:51.6393 -01.02.44.7198 J2000 2
3 3C454.3 22:53:57.7464 +16.08.53.5648 J2000 3
4 0530+135 05:30:56.4165 +13.31.55.1505 J2000 4

3http://casa.nrao.edu/

3

SpwID #Chans Frame Ch1(MHz) ChanWid(kHz)TotBW(kHz) Ref(MHz) Corrs
0 64 LSRK 347471.17 -1625 104000 347471.17 XX
1 256 LSRK 347389.776 -406.25 104000 347389.776 XX
2 64 LSRK 347313.164 -1625 104000 347313.164 XX
3 64 LSRK 347231.161 -1625 104000 347231.161 XX
...

You can check the data with plotms command. plotms is a powerful data plotter with various
options. You can set the options with the command line as well as the GUI interface. Figure 1 is the
Time v.s. Phase plot. If you find some bad data points in this plot, you can select these with ”Mark
Regions” button and flag them with ”Flag” button.

Figure 1: Sample of the plotms window. Time-Phase plot of the field ”3”, spw ”5” with the baseline
which contains antenna ”0”. The color shows different baselines, which can be specified in the Display
tab.

plotms is still under development, and for example, currently plotms cannot plot the data points
in multiple panels like MIR and always overlays them. You can also use plotxy for the data inspection
as follows.

> plotxy(vis="hh212_all.ms",xaxis="channel",yaxis="amp",datacolumn="data",
iteration="baseline", antenna="",spw="1,5,11,14,15,19,20",field="3",
averagemode="vector",width="1",timebin="all", crossscans=T,
crossbls=False,stackspw=F, subplot=441,plotcolor="darkcyan",
overplot=False,showflags=False,interactive=True,figfile="")

The above commands produce the Channel-Amplitude plot for each baseline in the specified spectral
windows (spw) and the output is shown in Figure 2. The data are integrated in the time domain
(timebin="all"). Data flagging can be done in plotxy GUI interface with the ”Mark Regions”and
”Flag” button. If you want to check the data for each baseline more precisely, please change to
subplot=111. Because we set iteration="baseline" , the plot for the next baseline appears by
pushing ”Next” button, not the arrow button.

plotxy cannot plot the spectral windows with different channel numbers at once, therefore you
need to plot the low- and high-resolution spw separately. plotms can handle the multi-resolution data
and plot them with the x-axis of Frequency. If you set the x-axis Channel, all the spectral windows

4

Figure 2: Channel-Amplitude plot of the field ”3” (Bandpass calibrator) in high-resolution chunks
for each baseline made with plotxy.

are overlaid, which would not be the one we want to see. Please note that execute > clearstat() to
clear the status after you display the data with plotxy, otherwise the file is locked and plotms fails
to display the data.

The sample script contains several plotxy commands to check the data for the field ”3” (bandpass
calibrator), but those do not cover the other field (source). You should take a look at the data for
the other sources with either plotxy or plotms.

3.2 Flagging

In addition to the flagging with GUI, flagdata command provide the data flagging function with
direct specifications for the bad data points. From the Line 184 in the sample script, we flag the edge
channels of each spectral windows.

> flagdata(vis=’hh212_all.ms’, mode=’manualflag’,spw=’1:0~9;246~255’)
> flagdata(vis=’hh212_all.ms’, mode=’manualflag’,spw=’5:0~9;246~255’)
...
> flagdata(vis=’hh212_all.ms’, mode=’manualflag’,spw=’0:0~3;60~63’)
> flagdata(vis=’hh212_all.ms’, mode=’manualflag’,spw=’2~4:0~3;60~63’)
...

Here we flag 10 channels in each edge of the high-resolution spectral windows and 4 channels in the
low-resolution windows. Maybe you want specify these with something like spw=’1,5:0~10;245~255’
for short, but this does not work as you want. CASA interprets this as ”flag ALL the channels in
spw 1 AND channel 0-10/245-255 in spw 5”. Therefore here the flagging is executed for each spectral
window separately. Of course you can make use of a Python for-loop here.

Figure 3 is the Time-Amplitude plot of the field 1,2 (target fields), and 4 (gain calibrator) in the
baseline ANT2-ANT5. The scatter in the amplitude of the data taken in the beginning (06:47:0 -
07:32:0) and the end (14:57:0 - 15:20:0) of the observation is larger than the rest, therefore it is good

5

to flag them. This scatter is seen in the other baselines, so flag them by specifying the time range as
follows.

> flagdata(vis=’hh212_all.ms’,mode=’manualflag’, timerange=’06:47:0~07:32:0’)
> flagdata(vis=’hh212_all.ms’,mode=’manualflag’,timerange=’14:57:0~15:20:0’)

Figure 3: Time-Amplitude plot for the baseline ANT2-ANT5. The large scattering in 06:47:0-07:32:0
is seen in the other baselines. Color shows the difference of the fields

Also the field 4 (gain calibrator) was observed for the radio pointing during 11:56:40-12:06:40, we
need to flag them.

> flagdata(vis=’hh212_all.ms’,mode=’manualflag’, timerange=’11:56:40~12:06:40’)

4 Bandpass Calibration

After flagging the bad data points, we move on to the Bandpass calibration. It would be good to check
the bandpass with plotxy before the calibration. The following command displays the Channel-Phase
plot of the low-resolution spectral windows of the field 3, the bandpass calibrator. You would need to
check the bandpass of the high-resolution spectral windows, and the Channel-Amplitude bandpass.

> plotxy(vis="hh212_all.ms",xaxis="channel",yaxis="phase",datacolumn="data",
iteration="baseline",
antenna="",spw="0,2~4,6~10,12~13,16~18,21~23",field="3",
averagemode="vector",width="1",timebin="all",
crossscans=T,crossbls=False,stackspw=F,
subplot=441,plotcolor="darkcyan",
overplot=False,showflags=False,interactive=True,figfile="")

bandpass is the task for the antenna-based bandpass calibration. The output is a calibration
table, so the original data has not been modified here.

> bandpass(vis=’hh212_all.ms’, caltable=’hh212_all.ms.bpoly4’, field=’3’,
spw=’0~23’, bandtype=’BPOLY’, maskedge=5, solint=’inf’,refant=’2’,
degamp=4, degphase=4)

6

Here we fit the data with 4th order polynominals in amplitude and phase by setting bandtype=’BPOLY’
and degamp=4, degphase=4. The 5% of the channels in each band edge are not used for the fitting
by setting maskedge=5, which is default. If you want to derive the bandpass solution in each chan-
nel (without fitting), try bandtype=’B’. solint=’inf’ (”solution interval is infinite”) means that
the calibration table is generated by the data integrated in time. The output is a calibration table,
hh212_all.ms.bpoly4.

The calibration table can be checked with plotcal. The output is shown in Figure 4a.

> plotcal(caltable="hh212_all.ms.bpoly4",xaxis="freq",yaxis="amp",
field="3",antenna="",spw="",timerange="",subplot=311,
overplot=False,clearpanel="Auto",iteration="antenna",
plotsymbol="o",plotcolor="blue",showgui=True,figfile="")

The above command makes a Frequency-Amplitude plot of the calibration table. Plotting all the
data points takes time. If you want to check the results for each antenna and each spectral window,
you can set iteration="antenna,spw" (Figure.4b).

> plotcal(caltable="hh212_all.ms.bpoly4",xaxis="freq",yaxis="amp",
field="3",antenna="",spw="",timerange="",subplot=421,
overplot=False,clearpanel="Auto",iteration="antenna,spw",
plotsymbol="o",plotcolor="blue",showgui=True,figfile="")

There seems several bugs in plotcal. When setting the iteration on ”spw”, note that the frequency
labeling is incorrect on the plotcal. The xaxis="chan" is ignored and plotted as the xaxis of frequency.
In addition, if you specify the spectral window with spw="", plotcal only plots part of the specified
spectral window.

(a) for all spectral windows (b) for each spectral window

Figure 4: Output of plotcal.

A task applycal applies the calibration table to the data.

> applycal(vis=’hh212_all.ms’,spw=’0~23’, field=’3’,
gaintable=’hh212_all.ms.bpoly4’,
spwmap=[],gainfield=’3’)

7

Here you need to give the name of the calibration table and the way how the table should be ap-
plied. The parameter spwmap controls this. Setting spwmap=[] tells that the calibration table is
spw-dependent, which is appropriate in the bandpass calibration, while spwmap=[0] means that the
solution is independent of the spectral windows, such as in the time-dependent gain calibration. You
also need to give the field ID (source name) of the calibrator with the parameter gainfield.

The result of the application of the bandpass calibration can be checked with plotxy and plotms.
Here is the example of the plotxy command. Note that datacolumn="corrected" , instead of ”data”
for the calibrated data points. The raw data always stay in the ”data” column and applycal only
add or modify the ”corrected” column.

> plotxy(vis="hh212_all.ms",xaxis="channel",yaxis="amp", datacolumn="corrected",
iteration="baseline", antenna=’’,spw="1,5,11,14,15,19,20",field="3",
averagemode="vector",width="1",timebin="all",crossscans=T,
crossbls=False,stackspw=False,extendflag=F, extendchan="",extendspw="",
extendant="",extendtime="",plotcolor=’darkcyan’,subplot=411,
multicolor="none",figfile="")

Figure.5 is the comparison between the Channel-Amplitude plot for field ’3’ before and after the
application of the bandpass calibration. The figure clearly shows that the bandpass becomes flat after
the calibration. Note that the amplitude is scaled to 1 Jy after applying the calibration. This scaling
is corrected later. The above command is for the Channel-Amplitude plot for the high-resolution
spectral windows, so you should check the Channel-Phase plot and both for the low-resolution spectral
windows, as described in the sample script.

Figure 5: Before (left) and after (right) the amplitude bandpass calibration for field ’3’ in the high-
resolution spectral windows.

If you would like to try the baseline-based calibration, you can use blcal task as follows.

> blcal(vis=’hh212_all.ms’, caltable=’hh212_all.ms.blcal’, field=’3’, spw=’0~23’,
solint=’inf’, combine=’scan’, calmode=’ap’,freqdep=True)

The parameter freqdep controls whether the calibration in frequency-dependent (True for bandpass)
or independent (False for time-dependent gain calibration). In the sample script, we don’t do the
baseline-based calibration.

8

5 Flux and Gain Calibration

5.1 Flux calibration

Originally Uranus was observed as an absolute flux calibrator, however, CASA 3.0.2 can not handle
the resolved planets as a flux calibrator properly. Therefore, we use the bandpass calibrator (a quasar
3c454.3, field ’3’ in the dataset) as a flux calibrator. The flux of this source is 9.0 Jy (9.02± 0.47 Jy
on 22 Nov 2005 and 8.37 ± 0.91 Jy on 10 Jan 2006), based on the SMA Calibrator List4. Although
this list is not intended for this kind of use, it is OK for us to use the flux in the list in the data
reduction tutorial (i.e. not for ”real” science). Let’s wait for the update of CASA.

The flux calibration can be done with setjy, in which you just tell the flux of the calibrator.

> setjy(vis=’hh212_all.ms’, field=’3’, spw=’0~23’, fluxdensity=[9.0,0.,0.,0.])

You can specify the flux density for four stokes parameters [I, Q, U, V], if you have. If not, just set
the I value. This task only put the flux of the calibrator and that flux is not applied to the actual
data value. We use a task fluxscale to scale the flux of the other sources after the gain calibration.

5.2 Gain calibration

In order to check the data of the gain calibrator, first you need to apply the bandpass calibration to
the calibrator (field ’4’).

> applycal(vis=’hh212_all.ms’,spw=’0~23’, field=’4’,
gaintable=’hh212_all.ms.bpoly4’, spwmap=[], gainfield=’3’)

Note the field selection field=’4’. After applycal you should check the result with plotxy or
plotms. The comparison between before and after gain calibration for the field 4 is shown in Figure.6.
You can see the bandpass is well calibrated.

Figure 6: Before (left) and after (right) the amplitude bandpass calibration for field ’4’ in the high-
resolution spectral windows.

Then, check the time dependence of the data as follows.

4http://sma1.sma.hawaii.edu/callist/callist.html

9

> plotxy(vis="hh212_all.ms",xaxis="time",yaxis="phase",datacolumn="corrected",
iteration="baseline", antenna="",spw="1,5,11,14,15,19,20",field="4",
averagemode="vector",width="allspw",timebin="0", subplot=421,
plotsymbol=".",multicolor="none",plotcolor="darkcyan",
overplot=False,showflags=False,interactive=True,figfile="")

This is a command for making the Time-Phase plots for field ’4’ in the high-resolution spectral
windows. Here all the channels are summed up by width="allspw".

The gain solution can be derived with a task gaincal. This is antenna-based, and if you want
baseline-based calibration, use blcal with the parameter freqdep=True.

> gaincal(vis=’hh212_all.ms’, caltable=’hh212_all.ms.apcal’,field=’3,4’,
spw=’0~23’, gaintype=’G’, minsnr=2.0,refant=’2’, calmode=’ap’,
solint=’180s’, combine=’spw’,gaintable=’hh212_all.ms.bpoly4’,spwmap=[])

Here we include field ’3’ as well as field ’4’ in order to keep the relative flux for further absolute
flux scaling. The parameter gaintype=’G’ indicates polarization-dependent gain. If you want
polarization-independent gain, use gaintype=’T’. (Anyway here we don’t care the polarization...)
If the signal-to-noise ratio is too low even when you set the infinite solution interval, you can try
gaintype=’GSPLINE’. With this option the data are fitted by a spline function, however, it cannot
be used in the fluxscale task. See the cookbook. Here we set the solution interval of 180 seconds
with the parameter solint=’180s’, which means that we integrate the data points in 180 seconds
to get one gain solution.

The results can be checked with plotcal (Figure. 7)

Figure 7: Plots of the gain calibration table. Time-Amplitude (left) and Time-Phase (right)

After deriving the gain solution, we scale the flux of the sources based on the flux calibrator
specified with setjy. The output (hh212_all.ms.fluxcal) is a flux-scaled gain table.

> fluxscale(vis=’hh212_all.ms’,caltable=’hh212_all.ms.apcal’,
fluxtable=’hh212_all.ms.fluxcal’,reference=’3’)

5.3 Applying all the calibrations

Now we can apply all the calibrations to the fields with applycal. Be careful on the parameter spwmap
and gainfield to apply the solution in appropriate way. spwmap=[] means that the solution depends

10

on the spectral window (e.g. bandpass), while spwmap=[0] indicates the solution is independent of
the spectral window (e.g. time-dependent gain calibration).

At first, we apply the calibration to the bandpass calibrator and the gain calibrator to check
whether the calibration is good or not.

> applycal(vis=’hh212_all.ms’,spw=’0~23’, field=’3’,
gaintable=[’hh212_all.ms.fluxcal’,’hh212_all.ms.bpoly4’],
spwmap=[[0],[]],gainfield=[’3’,’3’])

> applycal(vis=’hh212_all.ms’,spw=’0~23’, field=’4’,
gaintable=[’hh212_all.ms.fluxcal’,’hh212_all.ms.bpoly4’],
spwmap=[[0],[]],gainfield=[’4’,’3’])

To check the result, we can use plotxy and plotms.

Then, apply the calibrations to the target fields.

> applycal(vis=’hh212_all.ms’,spw=’0~23’, field=’1,2’,
gaintable=[’hh212_all.ms.fluxcal’,
’hh212_all.ms.bpoly4’],spwmap=[[0],[]],
gainfield=[’3,4’,’3’])

6 Split the data

Now we split off the science target data from the dataset.

> split(vis="hh212_all.ms", outputvis="hh212_targets.ms", field="1,2")

With split, the ”corrected” data column in the input MS file is copied to the ”data” column. In
addition, the field ID numbers are reset and now the field 0 and 1 are the IDs of the science targets.
You can check the result of split with listobs and plotms.

> listobs(vis="hh212_targets.ms")

> plotms(vis=’hh212_targets.ms’,xaxis="frequency",yaxis="amp",field=’0’,
avgtime=’1e7’,avgscan=True,avgbaseline=True)

The left panel of Figure 8 is the Frequency-Amplitude plot (or, spectrum) of the field 0 averaged over
all the baselines. The parameter avgtime=’1e7’ means the integration over the whole observation
(here just set a huge number to do this). You can see the two molecular lines (CO J = 3 − 2 at ∼
345.8 GHz and SiO J = 8 − 7 at ∼ 347.3 GHz) in this plot.

We can plot with the x-axis of velocity. However, plotms cannot handle the manual setting of the
reference frequency. We can do this with plotxy, and hopefully plotms will support these functions
in the future release. The spectrum drawn with the following command, plotting the spectral windows
19 and 20, is shown in the right panel of Figure 8.

> plotxy(vis="hh212_targets.ms",xaxis="velocity",yaxis="amp",
datacolumn="data",iteration="",selectdata=True,
antenna=’’,spw="19,20",field="0", timerange="",
averagemode="vector", restfreq=’345.79599GHz’,
width="1",timebin="all",crossscans=T,crossbls=T,
stackspw=False,subplot=111,interactive=T,figfile="")

11

Figure 8: Spectra plot with plotms for whole bandwidth (left) and the spectrum of CO J = 3 − 2
plotted with plotxy (right).

7 Continuum Subtraction

The continuum emission can be estimated from the line-free channels. In order to identify the line-free
spectral window, use plotxy.

> plotxy(vis="hh212_targets.ms",xaxis="channel",yaxis="amp",
datacolumn="data",iteration="",selectdata=True,
antenna=’’,spw="0,2~4,6~10,12~13,16~18,21~23",
field="0",timerange="",averagemode="vector",
width="1",timebin="all",crossscans=T,crossbls=T,
stackspw=False,subplot=111,interactive=T,figfile="")

Here we plot the low-resolution spectral windows and there are no lines. You can do the same thing
for the high-resolution spectral windows and will find the lines in spw 1 and spw 20 as shown in
Figure 8.

After identifying the line-free spectral windows, we can subtract the continuum. However, the
current version of uvcontsub2 changes the ”model” and ”corrected” column in the MS. So, before
running uvcontsub2, please duplicate the data for the back up. The Linux commands can be run
with os.system() on CASA.

> os.system(’cp -r hh212_targets.ms hh212_targets_line.ms’)

Now we run the task uvcontsub2 for subtracting continuum emission estimated from the line-free
spectral windows.

> uvcontsub2(vis=’hh212_targets_line.ms’,fitspw=’0,2~19,21~23’,
solint=’int’,combine=’spw’,want_cont=True)

For the moment uvcontsub2 supports only the first-order fit and subtraction. Two MS files are
created by uvcontsub, hh212_targets_line.ms.cont contains the estimated continuum and
hh212_targets_line.ms.contsub contains the continuum-subtracted line data.

12

8 Imaging

8.1 Continuum Imaging of the Calibrator

Here we make a image of the point-like quasar (field 4, the gain calibrator) to check the calibration.
All the imaging procedures (inverse-FT, CLEANing, and deconvolution) can be done in a task clean.

> clean(vis=’hh212_all.ms’,imagename=’hh212_f4_cont_dirty’,
field=’4’,spw=’’,mode=’mfs’,niter=0,gain=0.1,threshold=’40mJy’,
psfmode=’clark’,imagermode=’csclean’,
interactive=F,imsize=256,cell="0.35arcsec",
phasecenter=’’,pbcor=F,minpb=0.2)

At first, we make a ”dirty” image with setting the parameter niter=0. mode=’mfs’ indicates the
multi-frequency synthesis to make a single-channel image (because here we are making a continuum
image). psfmode=’clark’ sets the algorithm to make the synthesized beam as ”clark”, which is the
default choice. The other choice is ”hogbom” and this is the classical image-domain CLEAN. The
parameter imagermode=’csclean’ sets the mode of the CLEAN on the visibility plane. We can set
the image size and pixel size with imsize and cell. Here we switch off the parameters interactive
and pbcor for the interactive clean and primary beam correction, respectively.

The task clean creates five datasets with the names with .flux, .image, .model, psf, and
residual for the image with primary beam correction, the resulting image, the CLEAN model, the
PSF, and the residual of the CLEAN process, respectively. We can browse these data with the task
viewer.

> viewer(infile=’hh212_f4_cont_dirty.image’)

You can measure the noise level on the viewer. Select a region with rectangular/polygon box selection
button and double-click it, then the statistics are shown in the terminal and a new window. Measuring
at the emission-free region, the rms is ∼ 20 mJy/beam. We use 2σ value (40mJy/beam) as the
threshold in CLEAN in the following.

After checking the dirty image, let’s move on to CLEAN with the same task clean and modifying
several parameters.

> clean(vis=’hh212_all.ms’,imagename=’hh212_f4_cont_clean’,
field=’4’,spw=’’,mode=’mfs’,niter=50000,gain=0.1,threshold=’40mJy’,
psfmode=’clark’,imagermode=’csclean’,
interactive=True,imsize=256,cell="0.35arcsec",
phasecenter="",pbcor=F,minpb=0.2)

Here we set the number of iteration of 50000 and turn on the iterative cleaning. In running this task,
after the first iteration (making dirty image), a GUI window appears as shown in Figure 9. With this
window you can make a clean box with a rectangular selection or a polygon selection (see the caption
of Figure 9). After editing the clean box, you can push the blue arrow or green circular arrow in the
”Next Action” section on the GUI window. Pushing the former arrow make CLEAN continue till
the end when the residual falls below the threshold you set. On the other hand, pushing the latter
arrow make CLEAN proceed more cycles as you specified, and stops. The result at that point is
shown again if the residual is still above the threshold, and you can change the clean box, continue
the clean, or finish it with the red stop button. The resulting image and flux can be checked with
the task viewer.

> viewer(infile=’hh212_f4_cont_clean.image’)

13

Figure 9: GUI window for the interactive clean. We can make a clean box with this window. Click the
rectangular selection button (”R” in rectangular box) or polygon selection button (”R” in irregular
box) to select the shape of your clean box. Then draw the clean box on the image. Double-click the
drawn box to finish editing the clean box and the box outline turns white.

14

8.2 Continuum Imaging of the Targets

Here we make a continuum image of the targets with 2-field mosaic.

> clean(vis=’hh212_targets_line.ms.cont’,imagename=’hh212_cont_dirty’,
field=’’,spw=’’,
mode=’mfs’,niter=0,gain=0.1, threshold=’40mJy’,
psfmode=’clark’,imagermode=’mosaic’, scaletype=’SAULT’,
ftmachine=’mosaic’,
interactive=F, imsize=256,cell="0.35arcsec",
phasecenter="J2000 5h43m51.404 -1d02m53.10",
pbcor=F,minpb=0.2)

> viewer(’hh212_cont_dirty.image’)

The differences from the calibrator imaging are related to the mosaicing (imagermode=’mosaic’).
See the CASA cookbook for details. The noise level is ∼ 20 mJy/beam measured at the emission-free
region of the dirty map. We use 40 mJy/beam (2σ) as the threshold of the CLEAN process.

For cleaning, you can manually set the pixel values of the bottom-left/top-right corner of the clean
box with the parameter mask as follows.

> clean(vis=’hh212_targets_line.ms.cont’,imagename=’hh212_cont’,
field=’’,spw=’’,
mode=’mfs’,niter=20000,gain=0.05,threshold=’40mJy’,
psfmode=’clark’,imagermode=’mosaic’,scaletype=’SAULT’,
ftmachine=’mosaic’,
interactive=T,imsize=256,cell="0.35arcsec",
phasecenter="J2000 5h43m51.404 -1d02m53.10",
mask=[122,122,133,133], pbcor=F,minpb=0.2)

> viewer(’hh212_cont.image’)

You can see a compact peak at the center of the map.

You may make a ”continuum” image from the continuum-subtracted data for examining whether
the continuum subtraction worked well or not.

> clean(vis=’hh212_targets_line.ms.contsub’,imagename=’hh212_contsub’,
field=’’,spw=’0,2~19,21~23’, mode=’mfs’,niter=0,gain=0.1,threshold=’40mJy’,
psfmode=’clark’,imagermode=’mosaic’,scaletype=’SAULT’, ftmachine=’mosaic’,
interactive=F,imsize=256,cell="0.35arcsec",
phasecenter="J2000 5h43m51.404 -1d02m53.10", pbcor=F,minpb=0.2)

> viewer(’hh212_contsub.image’)

Browsing the dirty image with viewer, the peak flux is about 18 mJy which corresponds to ∼ 1σ
noise level. The continuum emission was successfully subtracted.

8.3 Spectral Imaging

Next, we make images of the SiO J = 8− 7 line. Before moving on to the imaging process, it is good
to inspect the spectrum to have the velocity range to be imaged. The plotxy output is shown in
Figure 10

15

> plotxy(vis="hh212_targets_line.ms.contsub",xaxis="velocity",yaxis="amp",
datacolumn="data",iteration="",selectdata=True, antenna=’’,spw="1",
field="0",timerange="",averagemode="vector",
restfreq=’347.33082GHz’,
width="1",timebin="all",crossscans=T,crossbls=T,
stackspw=False,subplot=111,interactive=T,figfile="")

Figure 10: The spectrum of the SiO J = 8 − 7 line for the field 0.

Judging from the spectrum, it is good to make images in the velocity range from −20 km/s to 30
km/s. The command for creating a dirty image is as follows.

> clean(vis=’hh212_targets_line.ms.contsub’,imagename=’hh212_SiOline_dirty’,
field=’’,spw=’’,
mode=’velocity’,start=’-20km/s’,nchan=50,width=’1.0km/s’,
interpolation=’linear’, outframe=’LSRK’,
niter=0,gain=0.1,threshold=’0.4Jy’,
psfmode=’clark’,imagermode=’mosaic’,scaletype=’SAULT’,
ftmachine=’mosaic’,restfreq=’347.33082GHz’,
interactive=F,
imsize=256,cell="0.35arcsec",
phasecenter="J2000 5h43m51.404 -1d02m53.10",
pbcor=F,minpb=0.15)

We set the parameter mode=’velocity’ for making a 3D cube data and set the starting velocity,
number of channels, and channel width with the parameter start, nchan, and width. We need to set
the rest frequency of the molecular line with restfreq. A dirty map is generated by this command
and you can check it with viewer (Figure 11). viewer provides the animation function useful for
inspecting the 3D cube data.

After checking the dirty image and having an idea of the clean box, we move on to CLEAN.

> clean(vis=’hh212_targets_line.ms.contsub’,imagename=’hh212_SiOline’,
field=’’,spw=’’,
mode=’velocity’,start=’-20km/s’,nchan=50,width=’1.0km/s’,
interpolation=’linear’, outframe=’LSRK’,
niter=10000,gain=0.05,threshold=’1.0Jy’,
psfmode=’clark’,imagermode=’mosaic’,scaletype=’SAULT’,
ftmachine=’mosaic’,restfreq=’347.33082GHz’,
interactive=T,

16

imsize=256,cell="0.35arcsec",mask=[100,70,155,185],
phasecenter="J2000 5h43m51.404 -1d02m53.10",
pbcor=F,minpb=0.15)

Here we set a rectangular clean box by inputting the blc/trc pixel, or you can set the clean region
with an external mask file. To make a mask file, first select the region you like with the rectangular
or polygon selection tool on viewer, then double-click the region. A window for the statistics appears
but ignore it. Click the ”Tools”-”Region in File”menu of the viewer window. You need to specify
the channels in which the mask is effective, then save it. The resulting mask file (”XXX.rgn”) can be
used in the CLEANing procedure by setting mask=’XXX.rgn’.

Figure 11: Dirty map of SiO J = 8−7 (left) and CLEANed SiO (contour) overlaid on the continuum
map (gray scale) plotted with the viewer (right).

Next, we make moment 0 maps of SiO. Since the systemic velocity is 1.7 km/s, simply divide the
data with that velocity.

> immoments(imagename=’hh212_SiOline.image’,moments=[0],axis=’spectral’,
chans=’2~21’,outfile=’hh212_SiOline.mom0.blue’)

> immoments(imagename=’hh212_SiOline.image’,moments=[0],axis=’spectral’,
chans=’22~38’,outfile=’hh212_SiOline.mom0.red’)

The 0th moment maps can be overlaid on the continuum image with viewer (Figure 11). There
are two red/blueshifted blobs just next (east-west) to the continuum peak. These blobs are probably
made by the side lobes. Please try to set the clean box with polygon to remove them.

17

